The accident at Chernobyl nuclear power plant in April 1986 will expose Finns to a total radiation dose of two millisieverts during 50 years. We receive a similar dose each year from radon. Half of the total dose from Chernobyl came during the first ten years after the accident.
Radioactive fallout fell down with rain
In the accident, high amounts of radioactive materials were released and propelled more than a kilo-metre up into the air by the force of the explosion and fire. At this altitude, winds blew initially towards Finland, Sweden and Norway.
Airflows carried the radioactive substances released into the air during the accident over Finland in about 24 hours. However, these air masses were so high that they could not be detected on ground level.
Only about two days after the accident, on 27 April, did the radioactive substances fall to such an extent that they were detected in the surface air close to the ground in Finland. The first observations were made in Nurmijärvi at the Finnish Meteorological Institute’s metering station and then at the Defence Forces’ metering station in Kajaani. The information reached STUK on 28 April at 10 a.m. STUK immediately started to investigate.
Over Sweden, the air masses fell slightly earlier than in Finland and the elevated levels of radioactivity were detected more quickly. The first thought in Sweden was that there was a radioactive leak at the Forsmark nuclear power plant. This conjecture turned out to be wrong.
Later, as the direction of winds changed, radioactive substances were also carried to other areas, in particular Central Europe. In Finland, the concentrations of radioactive materials were at their highest in the evening of 28 April. More than 30 radioactive substances were identified in air. After two or three days, the air was almost completely clean again. A couple of weeks after the accident, Finland received another plume of radioactive materials from Chernobyl. However, the concentrations were lower compared with the first plume.
Most of the radioactive materials were washed down with rain. The amount and intensity of the rain varied in different parts of Finland, which also meant that the amount of radioactive substances that fell to the ground varied considerably.
The fallout carried a lot of short-lived radioactive materials that disappeared from nature in just a few days or months. In the long term, with regard to radiation doses, the most important substances are the radioactive cesium isotopes, cesium-137 and cesium-134. Their half-lives are 30 and approximately two years, respectively.